解题思路:(Ⅰ)设等比数列{an}的公比为q,利用等差中项的性质及题设条件求得a3的值,进而求得a2+a4的值,用a1和q分别表示出a2,a3,a4,根据题意建立方程组,求得a1和q的值,则等比数列的通项公式可得.
(Ⅱ)把(1)中求得的an代入bn=log2an+1,求得bn的表达式,进而同等差数列的求和公式求得答案.
(Ⅰ)设等比数列{an}的公比为q,依题意有2(a3+2)=a2+a4,(1)
又a2+a3+a4=28,将(1)代入得a3=8.所以a2+a4=20.
于是有
a1q+a1q3=20
a1q2=8
解得
a1=2
q=2或
a1=32
q=
1
2
又{an}是递增的,故a1=2,q=2.
所以an=2n.
(Ⅱ)bn=log22n+1=n+1.
故Sn=
n2+3n
2.
点评:
本题考点: 等比数列的通项公式;数列的求和.
考点点评: 本题主要考查了等比数列和等差数列的性质.考查了学生对数列基本知识的掌握.