令x^4-12x^3+47x^2-62x+26=(x^2+a*x+26)*(x^2+b*x+1)
展开=x^4 + (a + b)*x^3 + (a*b + 27)*x^2 + (a + 26*b)*x + 26
所以必有:
a+b=-12
a+26b=-62
解得:a=-10,b=-2
所以x^4-12x^3+47x^2-62x+26=(x^2-10*x+26)*(x-1)^2
所以原方程的解为:x=1 ( x^2-10*x+26=0无实根 )
令x^4-12x^3+47x^2-62x+26=(x^2+a*x+26)*(x^2+b*x+1)
展开=x^4 + (a + b)*x^3 + (a*b + 27)*x^2 + (a + 26*b)*x + 26
所以必有:
a+b=-12
a+26b=-62
解得:a=-10,b=-2
所以x^4-12x^3+47x^2-62x+26=(x^2-10*x+26)*(x-1)^2
所以原方程的解为:x=1 ( x^2-10*x+26=0无实根 )