比如说相邻数字1和2都是集合A的元素,即1∈A,2∈A则1+1=2∈A,2-1=1∈A,所以此时1和2都不是“孤立元素”,故有结论:一个集合中由相邻数字构成的元素都不是“孤立元素”
例如:A={1,3,4,5﹜中的元素1,与它相邻的两个数字0和2都不在集合中,即1+1,1-1都不属于集合A,那1就是一个孤立元素,那集合A就不适合题意了,所以满足条件集合中的每一个元素,至少要有一个与它相邻的数字也在这个集合中.
讨论的想法:
(1)既然要相邻,那全部相邻肯定可以的,所以讨论第一类子集中的4个元素为相邻的四个数字
(2)再考虑4个元素不全相邻,那只有两个两个相邻,故有第二类子集中的四个元素分为两组,每一组的两个元素为相邻的两个数字