1.x→0时,x~sinx
原式=lim(x→0)(sinx^3)/x^3=lim(x→0)(sinx/x)^3=1
2.原式=lim(x→-无穷)[(-ax-b)^2-(x^2-x+1)]/(-ax-b-√x^2-x+1)=lim(x→-无穷)[(a^2-1)x^2+(2ab+1)x+b^2-1]/(-ax-b-√x^2-x+1)
a^2-1=0 2ab+1=0
∴a=1 b=-1/2
或a=-1 b=1/2
1.x→0时,x~sinx
原式=lim(x→0)(sinx^3)/x^3=lim(x→0)(sinx/x)^3=1
2.原式=lim(x→-无穷)[(-ax-b)^2-(x^2-x+1)]/(-ax-b-√x^2-x+1)=lim(x→-无穷)[(a^2-1)x^2+(2ab+1)x+b^2-1]/(-ax-b-√x^2-x+1)
a^2-1=0 2ab+1=0
∴a=1 b=-1/2
或a=-1 b=1/2