1/(sinx+cosx)的定积分怎么求

1个回答

  • 用万能代替

    ∫1/(sinx+cosx)dx

    =∫1/{2tan(x/2)/[1+tan^2(x/2)]+[1-tan^2(x/2)]/[1+tan^2(x/2)]}dx

    =∫[1+tan^2(x/2)]/[2tan(x/2)+1-tan^2(x/2)]dx

    =-∫1/[-2tan(x/2)-1+tan^2(x/2)]dtan(x/2)

    =-∫1/{[tan(x/2)-1]^2-2}dtan(x/2)

    =-1/(2√2)∫{1/[tan(x/2)-1-√2]-1/[tan(x/2)-1+√2]}dtan(x/2)

    =-1/(2√2)ln[tan(x/2)-1-√2]+1/2ln[tan(x/2)-1+√2]+C