因为g(x)在(a,+∞)有界,所以│g(x)│≤M ,x∈(a,+∞).其中M是一正数.又因为limf(x)=0(x趋向正无穷大) 所以对任意正数ε,存在正数x0,当x>x0时,│f(x)│
证明:若lim(x->+无穷)f(x)=0,且g(x)在(a,+无穷)有界,则lim(x->+无穷)f(x)g(x)=0
2个回答
相关问题
-
证明 若f 在 a到正无穷 上一致连续 且∫(a到正无穷) f(x)dx收敛,则 lim (x趋于正无穷)f(x)=0
-
设函数f(x)有界,又lim(x→∞)g(x)=0,证明:lim(x→∞)f(x)g(x)=0(证明过程)
-
已知f(x)和g(x)是定义于(负无穷,0)∪(0,正无穷)上的函数,且f(-x)+f(x)=0,g(x)*g(-x)=
-
设f(x)在R上连续,且lim(x→无穷)f(x) = +无穷,证明f(x)在R上取到最小值.
-
f(x)在[a,﹢无穷)有界,f'(x)存在且limf'(x)=d(x趋近于正无穷),求证d=0
-
设y=f(x)在[a,正无穷]上连续,且x趋于正无穷时,f(x)存在,证明:f在[a,正无穷]上有界
-
证明:若函数f(x)∈C[0,+∞],且lim(x->+∞)f(x)=A,则lim(x->+∞)[1/x*∫(0->x)
-
f(x)在(0,正无穷)内有界且可导,则当limf ’ (x)(x趋于正无穷)存在时,limf ’ (x)(x趋于正无穷
-
设f(x)在(负无穷,正无穷)上连续,且f(x)极限存在,证明f(x)为有界函数
-
广义积分收敛问题!若f(x)在(-无穷,+无穷)上连续,且∫f(x)dx(-无穷,+无穷)收敛证明:∫f(x-1/x)d