高数证明题:f(a)=0,f(b)=0,若在(a,b)内可导,f(x)+xf'(x)在(a,b)里有没有存在0点 并证明

1个回答

  • 构造一个辅助函数g(x)=xf(x),然后,g(a)=g(b)=0,这是用罗尔定理来证明的,然后根据这个 定理就可以知道必存在一点x.使得g‘(x.)=o,代入得:x.f’(x.)+f(x.)=0,其实中值定理就是用两点a,b间连线来做平行线,只要函数在这个区间上是连续的,那么这条线就至少和该区间上的一个点相切,书上介绍的也挺详细的,你画个图来理解就行了