构造一个辅助函数g(x)=xf(x),然后,g(a)=g(b)=0,这是用罗尔定理来证明的,然后根据这个 定理就可以知道必存在一点x.使得g‘(x.)=o,代入得:x.f’(x.)+f(x.)=0,其实中值定理就是用两点a,b间连线来做平行线,只要函数在这个区间上是连续的,那么这条线就至少和该区间上的一个点相切,书上介绍的也挺详细的,你画个图来理解就行了
高数证明题:f(a)=0,f(b)=0,若在(a,b)内可导,f(x)+xf'(x)在(a,b)里有没有存在0点 并证明
1个回答
相关问题
-
高数题.若f(x)在【a,b】上有二阶导f''(x),且f'(a)=f'(b)=0,证明在(a,b)内至少存在一点c,满
-
设f(x)在[a,b]上连续,在(a,b)内可导且f′(x)≤0,并有 证明:在(a,b)内有F'(x)≤0
-
一道高数证明题设函数f(x)在[a,b]上可导,f(a)=f(b)=0,并存在一点c属于(a,b),使得f(c)>0,证
-
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
-
f(x)在【a,b】上连续,在(a,b)内可导,且f(a)=f(b)=0,证明在(a,b)内至少有一点§,使f'(§)+
-
设f(x)在[a,b]二阶可导,f'(x)>0,f''(x)>0,证明:(b-a)f(a)b)f(x)dx
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f'(x)>0;证明存在唯一一点c属于(a,b),
-
若f(x)在[a,b]上可导,若c为(a,b)内一定点,且f(c)>0,(x-c)f'(c)≥0,证明在[a,b]上必有
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)f‘(c)+f^2(c
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)