解题思路:(1)根据非负数的和为0,各项都为0;
(2)应考虑到A、B、P三点之间的位置关系的多种可能解题;
(3)利用中点性质转化线段之间的倍分关系得出.
(1)∵|a+4|+(b-1)2=0,
∴a=-4,b=1,
∴|AB|=|a-b|=5;
(2)当P在点A左侧时,
|PA|-|PB|=-(|PB|-|PA|)=-|AB|=-5≠2.
当P在点B右侧时,
|PA|-|PB|=|AB|=5≠2.
∴上述两种情况的点P不存在.
当P在A、B之间时,|PA|=|x-(-4)|=x+4,|PB|=|x-1|=1-x,
∵|PA|-|PB|=2,∴x+4-(1-x)=2.
∴x=-[1/2],即x的值为-[1/2];
(3)|PN|-|PM|的值不变,值为[5/2].
∵|PN|-|PM|=[1/2]|PB|-[1/2]|PA|=[1/2](|PB|-|PA|)=[1/2]|AB|=[5/2],
∴|PN|-|PM|=[5/2].
点评:
本题考点: 绝对值;数轴.
考点点评: 本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.
利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.