n=1时,a1=s1=2a1-1,得:a1=1
n>1时,an=Sn-S(n-1)=2an+(-1)^n-2a(n-1)-(-1)^(n-1)
得:an-2a(n-1)+2(-1)^n=0
an+2/3*(-1)^n=2[a(n-1)+2/3*(-1)^(n-1)]
因此{an+2/3*(-1)^n}为公比为2的等比数列,首项为a1+2/3*(-1)=1/3
所以有:an+2/3*(-1)^n=1/3*2^(n-1)
故有an=1/3*2^(n-1)-2/3*(-1)^n
n=1时,a1=s1=2a1-1,得:a1=1
n>1时,an=Sn-S(n-1)=2an+(-1)^n-2a(n-1)-(-1)^(n-1)
得:an-2a(n-1)+2(-1)^n=0
an+2/3*(-1)^n=2[a(n-1)+2/3*(-1)^(n-1)]
因此{an+2/3*(-1)^n}为公比为2的等比数列,首项为a1+2/3*(-1)=1/3
所以有:an+2/3*(-1)^n=1/3*2^(n-1)
故有an=1/3*2^(n-1)-2/3*(-1)^n