|ab-2|+|b-1|=0,
所以|ab-2|=0,|b-1|=0,
所以ab-2=0,b-1=0,b=1,a=2,带入式子得
1/(1*2)+1/(2*3)+1/(3*4)+……+1/(2010*2011)
因为1/[n*(n+1)]=1/n-1/(n+1)
所以原式=(1-1/2)+(1/2-1/3)+……+(1/2010-1/2011)
=1-1/2011
=2010/2011.
|ab-2|+|b-1|=0,
所以|ab-2|=0,|b-1|=0,
所以ab-2=0,b-1=0,b=1,a=2,带入式子得
1/(1*2)+1/(2*3)+1/(3*4)+……+1/(2010*2011)
因为1/[n*(n+1)]=1/n-1/(n+1)
所以原式=(1-1/2)+(1/2-1/3)+……+(1/2010-1/2011)
=1-1/2011
=2010/2011.