已知等差数列{an}满足a1+a2+a3+...+a11=0,则有
1个回答
a1+a2+a3+...+a11=0
所以 S11=11(a1+a11)/2=0
所以a1+a11=a3+a9=0
所以正确答案:C
相关问题
已知等差数列{an}满足a1+a2+a3+…+a11=0,则有( )
已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )
(1)已知等差数列{an},满足a1+a2+…+a101=0,则有
已知数列{an}中,a3=2,a5=1,若{[11+an}是等差数列,则a11等于( )
已知数列{an}中,a3=2,a5=1,若{[11+an}是等差数列,则a11等于( )
已知等差数列{an}满足a2=0,a6+a8=-10,等差数列{an}满足a2=0,a6+a8=-10 (Ⅰ)求数列An
已知等差数列an,公差大于0,a1^2=(a11)^2
已知等差数列{an}满足a1+a3+a5+...+a99=0,则() A a1+a99>0 B a50=50 C a3+
已知等比数列{an}满足a1=3,且4a1,2a2,a3成等差数列,则a3+a4+a5=( )
已知等差数列{an}满足a3=2,a6=8 (1)求数列{an}...