过E作EG垂直DC于G,过E再作EH垂直BC于H
为了看起来方便,设正方形边长为a,设CM = y
三角形EGF与三角形FCM相似,EG平行于CM,所以EG = (4/5)y (就是0.8y)
因为角BDC = 45度,EG垂直于DC,所以DG = EG = (4/5)y,GC = a - (4/5)y = EH
在三角形ABM中,EH/AB = HM/BM,则:
[a - (4/5)y]/a = [1+ (4/5)y]/(a+y)
整理这个式子得:
5a2 – 8ay – 4y2 = 0
(5a+2)(a-2y)= 0
因为a和y不可能是负数,所以a = 2y,即2CM = BC
CM/BC = FM/AF
所以,AE=(4+5)*2/3 = 6(cm)