因为三角形是直角三角形,c是斜边,所以 a^2+b^2=c^2.
对等式 c=1/3ab-(a+b) 两边平方可得:
c^2
=1/9*a^2*b^2+(a+b)^2-2/3*ab*(a+b)
=1/9*a^2*b^2+a^2+b^2+2ab-2/3*ab*(a+b)
=1/9*a^2*b^2+c^2+2ab-2/3*ab*(a+b)
比较c^2与最后一个式子,消去c^2可知:
1/9*a^2*b^2+2ab-2/3*ab*(a+b)=0
两边再约去ab可得:
1/9ab+2-2/3(a+b)=0,即 ab-6(a+b)+18=0.于是有
(a-6)(b-6)=18.不妨设a>b(因为三边长都是正数的直角三角形不可能有两边相等),那么有如下几种情况:
(1)a-6=18,b-6=1.
此时 a=25,b=7.此时c^2=674,c不是整数,矛盾.
(2)a-6=9,b-6=2.
此时 a=15,b=8.容易求得 c=17 是整数,满足条件.
(3)a-6=6,b-6=3.
此时 a=12,b=9.容易求得 c=15 是整数,满足条件.
此外,a-6,b-6也可以是负整数,但此时简单计算即知无解.例如 a-6=-2,b-6=-9 或者 a-6=-3,b-6=-6,b不是正整数,矛盾.
综上,满足条件的三角形有两个,它们的边长分别为:
(8,15,17) 或者 (9,12,15).