令x1=x2+m (m>0),即:x1>x2
lg(1-x1/1+x1) - lg(1-x2/1+x2)
=lg(1-x1/1+x1)/(1-x2/1+x2)
=lg[(1-x1)(1+x2) /(1+x1)(1-x2)]
=lg[(1-x2-m)(1+x2) /(1+x2+m)(1-x2)]
=lg[(1-x2-m)/(1-x2)] - lg[(1+x2+m) /(1+x2)]
=lg[1 - m/(1-x2)] - lg[1+ m /(1+x2)]
当lg[1 - m/(1-x2)] - lg[1+ m /(1+x2)]>0时增函数,此时1 - m/(1-x2) > 1+ m /(1+x2)
1/(x2 -1) > 1/(x2 +1) 得:x2>1 故:x>1时增函数;同理:x<1时减函数
又1-x/1+x >0 得:-1<x<1
综上:定义域 -1<x<1,y=lg(1-x/1+x)的单调性为减函数.
祝你学习进步!