S(n+1)-Sn=(1/3)^(n+1)
a(n+1) = (1/3)^(n+1)
an = (1/3)^n
Sn = a1+a2+...+an
= (1/2)[ 1- (1/3)^n ]
S1,t(S1+S2),3(S2+S3)成等差数列
=>
S1+3(S2+S3) = 2t(S1+S2)
(1/3)+ 3(4/9+14/27) = 2t( 1/3 + 4/9)
29/9 = 14t/9
t= 29/14
S(n+1)-Sn=(1/3)^(n+1)
a(n+1) = (1/3)^(n+1)
an = (1/3)^n
Sn = a1+a2+...+an
= (1/2)[ 1- (1/3)^n ]
S1,t(S1+S2),3(S2+S3)成等差数列
=>
S1+3(S2+S3) = 2t(S1+S2)
(1/3)+ 3(4/9+14/27) = 2t( 1/3 + 4/9)
29/9 = 14t/9
t= 29/14