∫dx/[x√(4-ln²x)]
=∫dlnx/√(4-ln²x)
=∫dt/√(4-t²)
=∫d(t/2)/√[1- (t/2)²]
=∫dm/√(1-m²)
令m=sinθ,则:dm=cosθdθ
=∫cosθdθ/cosθ
=∫1dθ
=θ+C
=arcsin(lnx/2) +C
∫dx/[x√(4-ln²x)]
=∫dlnx/√(4-ln²x)
=∫dt/√(4-t²)
=∫d(t/2)/√[1- (t/2)²]
=∫dm/√(1-m²)
令m=sinθ,则:dm=cosθdθ
=∫cosθdθ/cosθ
=∫1dθ
=θ+C
=arcsin(lnx/2) +C