双曲线x2a2−y2b2=1的一条准线被它的两条渐近线所截得线段的长度恰好为它的一个焦点到一条渐近线的距离,则该双曲线的

1个回答

  • 解题思路:该双曲线的两条渐近线方程为y=±[b/a]x,其右准线l的方程为:x=

    a

    2

    c

    ,可求得右准线l被它的两条渐近线所截得线段的长度,

    再利用点到直线间的距离公式可求得焦点F(c,0)到渐近线y=[b/a]x的距离,列等式即可求得该双曲线的离心率.

    ∵该双曲线的两条渐近线方程为y=±[b/a]x,其右准线l的方程为:x=

    a2

    c,

    ∴右准线l被它的两条渐近线所截得线段的长度d1=2×[b/a]×

    a2

    c=[2ab/c];

    又焦点F(c,0)到渐近线y=[b/a]x的距离d2=

    bc

    a2+b2=[bc/c]=b,

    d1=d2

    ∴[2ab/c]=b,

    ∴c=2a.

    ∴e=2.

    故答案为:2.

    点评:

    本题考点: 双曲线的简单性质.

    考点点评: 本题考查双曲线的简单性质,考查点到直线间的距离公式,考查分析与解方程的能力,属于中档题.