由于-2a2-a-1=-2((a+[1/4])2+[7/16])<0,-3a2+2a-1=-3((a-[1/3])2+[2/9])<0,
故-2a2-a-1,-3a2+2a-1均在区间(-∞,0)上,
因此f(-2a2-a-1)<f(-3a2+2a-1)⇔-2a2-a-1<-3a2+2a-1,
解得a∈(0,3).
故选D.
由于-2a2-a-1=-2((a+[1/4])2+[7/16])<0,-3a2+2a-1=-3((a-[1/3])2+[2/9])<0,
故-2a2-a-1,-3a2+2a-1均在区间(-∞,0)上,
因此f(-2a2-a-1)<f(-3a2+2a-1)⇔-2a2-a-1<-3a2+2a-1,
解得a∈(0,3).
故选D.