由题意可知P(√2a/2,0),F(√2a,0)
设过P的直线的倾斜角为A,则过F的直线的倾斜角为90°+A
则过P的直线的参数方程为:x=√2a/2+tcosA,y=tsinA(t为参数,其几何意义为直线上到P点的有向线段的长度)
带入双曲线方程,并化简
得:(cos^2A-sin^2A)t^2+√2atcosA-a^2/2=0
故两根之积t1*t2=(-a^2/2)/(cos^2A-sin^2A)
有过F的直线的参数方程:
x=√2a+qcos(A+90°)=√2a-qsin(A),y=qcos(A+90°)=qcosA
(q的几何意义同上)
带入双曲线方程并化简:
(sin^2A-cos^2A)q^2-2√2aqsinA+a^2=0
q1*q2=a^2/(sin^2A-cos^2A)
因为:|q1*q2|=2|t1*t2|
所以:|FC|×|FD|=2|PA|×|PB|成立!