解由f(x+1)=-f(x)
知f(x+2)
=f(x+1+1)
=-f(x+1)
=-[-f(x)]
=f(x)
故T=2
由log2(16)<log2(20)<log2(32)
知4<log2(20)<5
故0<log2(20)-4<1
又由当x∈(0,1)时,f(x)=2^x-1,
故f(log2(20))
=f(log2(20)-4)
=2^(log2(20)-4)-1
=2^log2(20)2^(-4)-1
=20×2^(-4)-1
=20/2^4-1
=20/16-1
=5/4-1
=1/4