问题是不是:[1/(1+2+3+4)+1/(1+2+3+4+5)+……+1/(1+2+3+……+99)]=?
1+2+3+……+n=n*(n+1)/2
1/(1+2+3+……=n)=2/[n*(n+1)]=2*[1/n-1/(n+1)]
故,原式=2*[(1/4-1/5)+(1/5-1/6)+……+(1/99-1/100)]
=2*(1/4-1/100)
=12/25
完毕.
问题是不是:[1/(1+2+3+4)+1/(1+2+3+4+5)+……+1/(1+2+3+……+99)]=?
1+2+3+……+n=n*(n+1)/2
1/(1+2+3+……=n)=2/[n*(n+1)]=2*[1/n-1/(n+1)]
故,原式=2*[(1/4-1/5)+(1/5-1/6)+……+(1/99-1/100)]
=2*(1/4-1/100)
=12/25
完毕.