(1)
延长AE、BC,相交于点P;
则有:CP = AD(证全等);
在△BFP中,BP边上的中线 CF = BP/2 ,
可得:△BFP是直角三角形,∠BFP = 90° ,即有:BF⊥AE .
(2)
BM交AD于点G,延长BM、CD相交于点Q;
则有:BF = 2AF = 4FG(证相似),DG = AG 、QG = BG 、DQ = AB(证全等);
CM是△CFQ的角平分线,可得:MF/MQ = CF/CQ = 1/2 ,
则有:FQ = 6FG ,FM = 2FG ,MQ = 4FG ,MG = FG ,
可得:△AGM ≌ △DGF ,则有:AM∥DF ,
CM平分等腰△CDF的顶角,可得:CM⊥DF ,则有:AM⊥CM .
(3)
过点M作MN⊥BC于N;
则有:CN = 1.6 ,MN = 4.8 ,由勾股定理可得:CM = 1.6√10 .