求积分∫1/(x+√1-x²)dx

1个回答

  • ∫1/(x+√1-x²)dx

    做三角代换:令x=sint,则√1-x²=cost,dx=costdt

    原式=∫cost/(sint+cost)dt=(1/2)∫ (cost+sint+cost-sint)/(sint+cost)dt

    =(1/2)∫ (cost+sint)/(sint+cost)dt+(1/2)∫ (cost-sint)/(sint+cost)dt

    =(1/2)∫ 1dt+(1/2)∫ 1/(sint+cost)d(sint+cost)

    =(1/2)t+(1/2)ln|sint+cost|+C

    =(1/2)arcsinx+(1/2)ln|x+√1-x²|+C