函数f(x)=ax²+bx+c,(a≠0)是二次函数,
其图象的对称轴为直线x= -b/(2a),
∵函数f(x)为偶函数,
∴其图象关于y轴(直线x=0)对称,
得-b/(2a)=0,∴b=0
函数g(x)=2ax³-bx²-2cx
=2ax³-2cx
g(-x)= 2a(-x)³-2c(-x)
= -2ax³+2cx
= -g(x)
∴函数g(x)为奇函数.
函数f(x)=ax²+bx+c,(a≠0)是二次函数,
其图象的对称轴为直线x= -b/(2a),
∵函数f(x)为偶函数,
∴其图象关于y轴(直线x=0)对称,
得-b/(2a)=0,∴b=0
函数g(x)=2ax³-bx²-2cx
=2ax³-2cx
g(-x)= 2a(-x)³-2c(-x)
= -2ax³+2cx
= -g(x)
∴函数g(x)为奇函数.