已知数列{an}满足a1=2,a2=8,a下标(n+1)=4an-4a下标(n-1)(n=2.3.4···)

2个回答

  • a(n+1)=4a(n)-4a(n-1),

    a(n+2)=4a(n+1)-4a(n),

    a(n+2)-2a(n+1)=2a(n+1)-4a(n)

    b(n+1)=a(n+2)-2a(n+1)=2[a(n+1)-2a(n)]=2b(n),

    {b(n)=a(n+1)-2a(n)}是首项为b(1)=a(2)-2a(1)=8-4=4,公比为2的等比数列.

    b(n)=a(n+1)-2a(n)=4*2^(n-1)=2^(n+1),

    a(n+1)/2^(n+1) = a(n)/2^n + 1,

    {a(n)/2^n}是首项为a(1)/2=1,公差为1的等差数列.

    a(n)/2^n = 1 +(n-1) = n.

    a(n)=n*2^n,

    s(n)=1*2 + 2*2^2 + ... + (n-1)2^(n-1) + n*2^n

    2s(n) = 1*2^2 + 2*2^3 + ... + (n-1)2^n + n*2^(n+1),

    s(n)=2s(n)-s(n)=-2-2^2-...-2^n + n*2^(n+1)

    =n*2^(n+1) - 2[1+2+...+2^(n-1)]

    =n*2^(n+1) - 2[2^n - 1]/(2-1)

    =n*2^(n+1) - 2[2^n - 1]

    =(n-1)2^(n+1) + 2