1.计算
(1)(2a^2 b^2c)^4z÷(-2ab^2c^2)^2
=2^4a^8 b^8c^4z÷2^2a^2b^4c^4
=2^2a^6b^4z
=4a^6b^4z
(2) (3x^3y^3z)^4÷(3x^3y^2 z)^2÷(2分之1x^2y^6 z)
= 3^4x^12y^12z^4÷(3^2x^6y^4z^2÷(2分之1x^2y^6 z)
= 9x^6y^8z^2÷(2分之1x^2y^6 z)
=18x^4y^2z
(3) 3a^2x^3÷(3分之1ax)·(-4a^5x^3)÷(6a^2 x^5)
=9ax^2·*(-4a^5x^3)÷(6a^2 x^5)
=-36a^6x^5÷(6a^2 x^5)
=-6a^4
(4) (0.4x^3y^m)^2÷(2x^2y^n)^2
= 0.16x^6y^2m÷4x^4y^2n
= 0.04x^2y^(2m-2n)
(5) -27分之1(a-b)^9÷9分之1(b-a)^3
= -27分之1(a-b)^9÷(-1/9(a-b)^3)
= 1/3(a-b)^6
(6)8分之3(m+n)^10÷12分之5(m+n)^2÷(-m-n)^3
=9/10(m+n)^8÷(-(m+n)^3)
=-9/10(m+n)^5