1.计算 (1)(2a^2 b^2c)^4z÷(-2ab^2c^2)^2 (2) (3x^3y^3z)^4÷(3x^3y

1个回答

  • 1.计算

    (1)(2a^2 b^2c)^4z÷(-2ab^2c^2)^2

    =2^4a^8 b^8c^4z÷2^2a^2b^4c^4

    =2^2a^6b^4z

    =4a^6b^4z

    (2) (3x^3y^3z)^4÷(3x^3y^2 z)^2÷(2分之1x^2y^6 z)

    = 3^4x^12y^12z^4÷(3^2x^6y^4z^2÷(2分之1x^2y^6 z)

    = 9x^6y^8z^2÷(2分之1x^2y^6 z)

    =18x^4y^2z

    (3) 3a^2x^3÷(3分之1ax)·(-4a^5x^3)÷(6a^2 x^5)

    =9ax^2·*(-4a^5x^3)÷(6a^2 x^5)

    =-36a^6x^5÷(6a^2 x^5)

    =-6a^4

    (4) (0.4x^3y^m)^2÷(2x^2y^n)^2

    = 0.16x^6y^2m÷4x^4y^2n

    = 0.04x^2y^(2m-2n)

    (5) -27分之1(a-b)^9÷9分之1(b-a)^3

    = -27分之1(a-b)^9÷(-1/9(a-b)^3)

    = 1/3(a-b)^6

    (6)8分之3(m+n)^10÷12分之5(m+n)^2÷(-m-n)^3

    =9/10(m+n)^8÷(-(m+n)^3)

    =-9/10(m+n)^5