f'(x)=1/(x-1)-k,(x>1)
当k≤0时,f'(x)>0,f(x)在(1,+∞)单调递增
即f'(x)的增区间为(1,+∞) 无减区间
当k>0时,令f'(x)=0得x=1+1/k
所以增区间为(1,1+1/k) 减区间为(1+1/k,+∞)
(2)f(x)=ln(x-1)-k(x-1)+1=ln(x-1)+1
k>=[ln(x-1)+1]/(x-1)
设g(x)=[ln(x-1)+1]/(x-1)
g'(x)=[1/(x-1)*(x-1)-(ln(x-1)+1)]/(x-1)^2=[1-ln(x-1)-1]/(x-1)^2=-ln(x-1)/(x-1)^2=0
ln(x-1)=0
x=2
在(1,2)上有g'(x)>0,在(2,+无穷)上有g'(x)=1.