证明:连接AD(如图),
∵∠BAC=90°,PE⊥AB,PF⊥AC
∴四边形AEPF是矩形,
∴AE=FP,
∵AB=AC,∠BAC=90°,D为BC中点,
∴AD=DC,∠1=∠2=45°=∠3,
∴∠EAD=∠FCD=135°,∠CPF=45°=∠3,
∴CF=PF=AE,
∴△ADE≌△CDF(SAS)
∴DE=DF.
证明:连接AD(如图),
∵∠BAC=90°,PE⊥AB,PF⊥AC
∴四边形AEPF是矩形,
∴AE=FP,
∵AB=AC,∠BAC=90°,D为BC中点,
∴AD=DC,∠1=∠2=45°=∠3,
∴∠EAD=∠FCD=135°,∠CPF=45°=∠3,
∴CF=PF=AE,
∴△ADE≌△CDF(SAS)
∴DE=DF.