【1】
由题设可知,对任意实数x∈R,
恒有f(x+4n)=f(x),(x∈R,n∈Z)
由题设可知,当-2≦x<2时,
f(x)=(x/2)+1
【2】
当4n≦x<4n+2时,有0≦x-4n<2
∴f(x-4n)=[(x-4n)/2]+1且f(x-4n)=f(x)
∴f(x)=(x/2)+(1-2n)
当4n+2≦x<4n+4时,有4(n+1)-2≦x<4(n+1)
∴-2≦x-4(n+1)<0
∴由题设,f[x-4(n+1)]=1+[x-4(n+1)]/2=(x/2)+1-2(n+1)
且f[x-4(n+1)]=f(x)
∴此时f(x)=(x/2)+1-2(n+1)
【3】
综上可知:
当4n≦x<4n+2时,f(x)=(x/2)+1-2n.
当4n+2≦x<4n+4时,f(x)=(x/2)+1-2(n+1).