原式整理得Sn-Sn-1=2(Sn-1-Sn-2)+n^2,即an=2an-1+n^2,多写一项an-1=2an-2+(n-1)^2,两式相减,有an-an-1=2(an-1-an-2)+2n-1,令bn=an+1-an,有bn=2bn-1+2n+1,两边同时加上2n+5,整理得bn+2n+5=2{[bn-1+2(n-1)]+5},可知{bn+2n+5}是首项为12,公比为2的等比数列,所以bn=3*2^n+1,即an+1-an=3*2^n+1,两边同时减去2*2^n+1,整理得an+1-2*2^n+1=an-2*2^n,显然{an-2*2^n}为常数列,因此an-2*2^n=a1+4=5所以,an=5+2^n+1
草草计算,过程大致这样,结果最好再重新验算一遍:)