在三角形ABC中,已知2sin^2(A)=3sin^2(B)+3sin^2(C),cos(2A)+3cosA+3cos(

1个回答

  • 2(sinA)^2=3(sinB)^2+3(sinC)^2

    两边同乘外接圆直径的平方4R^2得

    2(2RsinA)^2=3(2RsinB)^2+(2RsinC)^2

    --->2a^2=3b^2+3c^2……(1)

    cos2A+3cosA+3cos(B-C)=1 A=pi-(B+C)

    --->1-2(sinA)^2-3cos(B+C)+3cos(B-C)=1

    --->2(sinA)^2+3[cos(B+C)-cos(B-C)]=0

    --->2(sinA)^2-3*2sinBsinC=0 和差化积

    --->(2RsinA)^2-3(2RsinB)(2RsinC)=0

    --->a^2-3bc=0

    --->2a^2=6bc…………(2)

    (1)-(2):3a^2-6bc+c^2=0

    --->3(b-c)^2=0

    --->b=c.

    代入(2):a^2=3b^2

    所以a^2:b^2:c^2=2:1:1

    --->a:b:c=√3:1:1.