(sin2x+1 sin2x )(cos2x+1 cos2x )=sin2xcos2x+1 sin2xcos2x +sin2x cos2x +cos2x sin2x =sin2xcos2x+2 sin2xcos2x -2
=1 4 sin22x+8 sin22x -2=1 4 sin22x+1 4sin22x + 31 4sin22x -2≥1 2 +31 4 -2=25 4 ,
当且仅当sin2x=1时,1 4 sin22x+1 4sin22x 与31 4sin22x 同时取得最小值.
故答案为:25 4 .