1∵CO=DO,∠COD=60°;
∴△COD是等边三角形;
取CD的中点M,连接OM,则OM⊥CD;
∵CO=2,
∴OM=√ 3/2CO= √3.
连接AO,在Rt△AOM中,AM= 3/2CD=3;
∴AO= √OM2+AM2= √3+9=2 √3.
即大圆的半径长为2 √3.
2连接OF.
∵AE是小圆的切线,且切点为F;
∴OF⊥AE.
又∵AE为大圆的弦,
∴AE=2AF.
有:AF2=AC•AD;
∵AC=AD=2,AD=2CD,
∴AF=2 √2;
∴AE=2AF=4√ 2.
1∵CO=DO,∠COD=60°;
∴△COD是等边三角形;
取CD的中点M,连接OM,则OM⊥CD;
∵CO=2,
∴OM=√ 3/2CO= √3.
连接AO,在Rt△AOM中,AM= 3/2CD=3;
∴AO= √OM2+AM2= √3+9=2 √3.
即大圆的半径长为2 √3.
2连接OF.
∵AE是小圆的切线,且切点为F;
∴OF⊥AE.
又∵AE为大圆的弦,
∴AE=2AF.
有:AF2=AC•AD;
∵AC=AD=2,AD=2CD,
∴AF=2 √2;
∴AE=2AF=4√ 2.