AC方程:y=x/2+2
A:y=0 x/2+2=0 x=-4 A(-4,0)
C:x=0 y=0/2+2=2 C(0,2)
SΔAOC=1/2*|-4|*|2|=4
设P(p,p/2+2) (p>0)
SΔPAB=9
1/2*|p-(-4)|*(p/2+2)=9
(p+4)(p+4)/2=18
(p+4)²=36
p+4=±6
p=-4±6
∵p>0
∴p=-4+6=2
p/2+2=2/2+2=3
P(2,3)
B(2,0)
y=k/x (x>0)
3=k/2
k=6
y=6/x (x>0)
设R(r,6/r) (r>2)
M(r,r/2+2)
T(r,0)
SΔBTM=1/2*(r-2)*(r/2+2)
=(r-2)(r+4)/4
=(r²+2r-8)/4
SΔBTM=SΔAOC
(r²+2r-8)/4=4
r²+2r-8=16
r²+2r-24=0
(r+6)(r-4)=0
r=-6