利用正弦定理:
a/sinA=b/sinB=c/sinC
∵ sina:sinB:sinc=3:5:7
∴ a:b:c=3:5:7
设a=3t,b=5t,c=7t
∵ 大边对大角,
∴C最大
利用余弦定理
cosC=(a²+b²-c²)/(2ab)
=(9t²+25t²-49t²)/(2*3t*5t)
=-15t²/(30t²)
=-1/2
∴ C=120°
即 此三角形的最大内角的度数等于120°
利用正弦定理:
a/sinA=b/sinB=c/sinC
∵ sina:sinB:sinc=3:5:7
∴ a:b:c=3:5:7
设a=3t,b=5t,c=7t
∵ 大边对大角,
∴C最大
利用余弦定理
cosC=(a²+b²-c²)/(2ab)
=(9t²+25t²-49t²)/(2*3t*5t)
=-15t²/(30t²)
=-1/2
∴ C=120°
即 此三角形的最大内角的度数等于120°