已知△ABC和△DBE中,AB=DE,且∠BAC=∠BDE

2个回答

  • (1)CE=AD;

    (2)CE= 3

    AD.

    理由:过点A作AM⊥BC于M,过点D作DN⊥C于N,

    ∵AB=AC,DB=DE,∠BAD=120°

    ∴∠B=30°,BN=EN,BM=CM,

    ∴cos∠B=BN

    BD

    =BM

    BA

    = 3

    2

    ,

    ∴BE= 3

    BD,BC= 3

    AB,

    ∵∠BDE=∠BAC,

    ∴DE∥AC,

    ∴AD

    AB

    =EC

    BC

    ,

    ∴AD

    EC

    =AB

    BC

    =1

    3

    ,

    ∴CE= 3

    AD.

    (3)CE与AD之间的数量关系是CE=2sinα2

    AD.

    证明:∵AB=AC,DB=DE,

    ∴AB

    DB

    =AC

    DE

    ∵∠BAC=∠BDE,

    ∴△ABC∽△DBE.

    ∴AB

    DB

    =BC

    BE

    ,∠ABC=∠DBE,

    ∴AB

    BC

    =DB

    BE

    ,∠ABD=∠ABC-∠DBC=∠DBE-∠DBC=∠CBE,

    ∴△ABD∽△CBE,

    ∴AD

    CE

    =BD

    BE

    ,

    过点D作DF⊥BE于点F.

    ∴∠BDF=1

    2

    ∠BDE=α

    2

    ,

    ∴BE=2BF=2BD•sin∠BDF=2BD•sinα

    2

    ,

    ∴AD

    CE

    =1

    2sinα

    2

    ,

    ∴CE=2sinα

    2

    AD.