(1)CE=AD;
(2)CE= 3
AD.
理由:过点A作AM⊥BC于M,过点D作DN⊥C于N,
∵AB=AC,DB=DE,∠BAD=120°
∴∠B=30°,BN=EN,BM=CM,
∴cos∠B=BN
BD
=BM
BA
= 3
2
,
∴BE= 3
BD,BC= 3
AB,
∵∠BDE=∠BAC,
∴DE∥AC,
∴AD
AB
=EC
BC
,
∴AD
EC
=AB
BC
=1
3
,
∴CE= 3
AD.
(3)CE与AD之间的数量关系是CE=2sinα2
AD.
证明:∵AB=AC,DB=DE,
∴AB
DB
=AC
DE
.
∵∠BAC=∠BDE,
∴△ABC∽△DBE.
∴AB
DB
=BC
BE
,∠ABC=∠DBE,
∴AB
BC
=DB
BE
,∠ABD=∠ABC-∠DBC=∠DBE-∠DBC=∠CBE,
∴△ABD∽△CBE,
∴AD
CE
=BD
BE
,
过点D作DF⊥BE于点F.
∴∠BDF=1
2
∠BDE=α
2
,
∴BE=2BF=2BD•sin∠BDF=2BD•sinα
2
,
∴AD
CE
=1
2sinα
2
,
∴CE=2sinα
2
AD.