求证n(n+1)(n+2)能被6整除

1个回答

  • 当n=1时

    n(n+1)(n+2)=6

    能被6整除

    设n=k时,

    n(n+1)(n+2)能被6整除

    即,k(k+1)(k+2)能被6整除

    当n=k+1时,

    (k+1)(k+2)(k+3)-k(k+1)(k+2)

    =(k+1)(k+2)·[(k+3)-k]

    =3(k+1)(k+2)

    因为,k+1、k+2必定一奇一偶,

    所以,(k+1)(k+2)是2的倍数

    所以3(k+1)(k+2)是6的倍数

    从而,(k+1)(k+2)(k+3)是6的倍数.

    所以结论当n=k+1时也成立.

    于是,

    n(n+1)(n+2)能被6整除