f(x)=根号3sin2x-2sinx的平方=√3sin2x-cos2x-1=2sin(2x-π/6)-1
最小正周期T=2π/2=π
由-π/2+2kπ≤2x-π/≤π/2+2kπ
得π/4+kπ≤x≤3π/4+kπ
所以单调递增区间【π/4+kπ,3π/4+kπ】 k∈Z
由2x-π/6=kπ得 x=π/12+kπ/2
所以对称中心(π/12+kπ/2,-1) k∈Z
最大值f(x)=2-1=1 此时2x-π/6=π/2+2kπ 得x=2π/3+kπ
(2)
由2sin(2x-π/6)-1=0
sin(2x-π/6)=1/2
2x-π/6=π/6+2kπ
x=π/6+kπ