解题思路:首先,当x=0时,f(0)=0,然后,设x<0,则-x>0,然后,借助于函数为奇函数,进行求解即可.
因为f(x)是定义在R上的奇函数,
所以,当x=0时,f(0)=0,
设x<0,则-x>0,
∴f(−x)=(
1
2)−x=((2-1)-x=2x,
∵f(-x)=-f(x),
∴-f(x)=2x,
∴f(x)=-2x,
∴f(x)=
(
1
2)x,x>0
0,x=0
−2x,x<0.
点评:
本题考点: 函数解析式的求解及常用方法.
考点点评: 本题重点考查了函数的奇偶性与函数的解析式相结合知识点,涉及到指数的运算性质,属于中档题,难度中等.