由已知A为2阶方阵,且有两个线性无关的特征向量a1,a2
故令 P=(a1,a2),有 P^-1AP=diag(1,2).
所以 A = Pdiag(1,2)P^-1
=
1 0 1 0 1 0
1 1 0 2 -1 1
=
1 0
-1 2
A^2 =
1 0
-3 4
A^100 = Pdiag(1,2)^100P^-1 = Pdiag(1,2^100)P^-1
=
1 0 1 0 1 0
1 1 0 2^100 -1 1
=
1 0
1-2^100 2^100
由已知A为2阶方阵,且有两个线性无关的特征向量a1,a2
故令 P=(a1,a2),有 P^-1AP=diag(1,2).
所以 A = Pdiag(1,2)P^-1
=
1 0 1 0 1 0
1 1 0 2 -1 1
=
1 0
-1 2
A^2 =
1 0
-3 4
A^100 = Pdiag(1,2)^100P^-1 = Pdiag(1,2^100)P^-1
=
1 0 1 0 1 0
1 1 0 2^100 -1 1
=
1 0
1-2^100 2^100