解题思路:根据函数是一个偶函数,利用偶函数的定义,写出关系式得到m的值是0,根据在区间(2,3)上存在唯一零点,得到f(2)×f(3)<0且在(2,3)上为单调函数,求出结果.
∵f(x)=x2+a|x-m|+1是偶函数,
f(-x)=-(x)2+a|-x-m|+1,
f(x)=x 2+a|x-m|+1,
若f(x)=f(-x),
则|x+m|=|x-m|
2xm=-2xm
∴m=0
f(x)=x2+a|x|+1,
x∈(2,3),f(x)=x2+ax+1,若其在区间(2,3)上存在唯一零点
f(2)×f(3)<0且在(2,3)上为单调函数
∴(5+2a)(10+3a)<0
∴-
10
3<a<-
5
2
故答案为:(-
10
3,-
5
2)
点评:
本题考点: 函数零点的判定定理.
考点点评: 本题考查函数的零点的判定定理,本题解题的关键是先写出符合偶函数的定义的式子,整理出式子中的字母系数的值.