原式=∫ln(1+x)/(x-2)² d(x-2)
=-∫ln(1+x)d[1/(x-2)]
=-ln(1+x)*1/(x-2)+∫1/(x-2) dln(1+x)
=-ln(1+x)*1/(x-2)+∫dx/(x-2)(x+1)
=-ln(1+x)*1/(x-2)+1/3*∫[1/(x-2)-1/(x+1)]dx
=-ln(1+x)*1/(x-2)+1/3*(ln|(x-2}-ln|x+1|)+C
原式=∫ln(1+x)/(x-2)² d(x-2)
=-∫ln(1+x)d[1/(x-2)]
=-ln(1+x)*1/(x-2)+∫1/(x-2) dln(1+x)
=-ln(1+x)*1/(x-2)+∫dx/(x-2)(x+1)
=-ln(1+x)*1/(x-2)+1/3*∫[1/(x-2)-1/(x+1)]dx
=-ln(1+x)*1/(x-2)+1/3*(ln|(x-2}-ln|x+1|)+C