1)BE=CF
2)①证明:∵△AEF是绕A点旋转而来
∴∠CAB=∠EAF
∴∠CAB+∠CAE=∠EAF+∠CAE
即:∠BAE=∠CAF
在△BAE和△CAF中
AB=AC
∠BAE=∠CAF
AE=AF
∴△BAE全等于△CAF(SAS)
∴BE=CF
②60° α
3)
CE:AP=2:1
证明:
延长AP至M使PM=AP连接MF
∵P是BF中点
∴BP=PF
在△BAP和△FMP中
BP=PF ∠APB=∠MPF AP=MP
∴△BAP全等于△FMP(SAS)
∴BA=MF ∠ABF=∠BFM
∴BA‖MB
∴∠BAM=∠AMF
∵BA=MF BA=AC
∴AC=MF
∵∠BAM+∠CAE=90°=∠AMF+∠MFA
∴∠CAE=∠MFA
在△CAE和△MFA中
AC=MF ∠CAE=∠MFA AE=AF
∴△CAE全等于△MFA(SAS)
∴CE=AM
即:CE=2AP
∴CE:AP=2AP:AP=2:1
4)CE:AP=2:1
证明:在BP上截一点D使PD=PA
∵P是BF中点
∴BP=PF
∵PB=PD+BD
PF=PA+AF
PD=PA
∴BD=AF
又∵AE=AF
∴BD=AE
又∵AC=AB
∴AC-AE=AB-BD
即:CE=DA
∴CE=PD+PA=2PA
∴CE:AP=2AP:AP=2:1
一定要给分啊,想了3天