因为 (1+x)^(1/x)在x-->0+ 时
等于e + 无穷小量,而无穷小量的无穷大次幂(1/x是无穷大)是很难界定是否有界的,所以不能够先求解.
这类题目求解得最好方法就是:
(1)指数型A^B转化为exp{BlnA} == exp{lnA/(1/B)}分数型
(2)然后使用洛必达法则,对分子分母同时求导,直到为无穷小都可以忽略.
本题中:
x>0,f(x) = exp{1/x * ln[(1+x)^(1/x)/e]}=exp{[ln(1+x)-x]/x^2}
指数内部是0/0型
洛必达准则,f(0+)= lim exp{[ln(1+x)-x]/x^2} = exp{lim{[ln(1+x)-x]/x^2}}
= exp { lim [1/(1+x)-1]/(2*x)} = e(-0.5)