规律:与真数是否是2的指数次幂有关.
log2^1=0
log2^2=1
log2^3=1
...
log2^512=9
…
log2^1023=9
log2^1024=10
…
log2^2008=10
∴原式
=1×2^1+2×2^2+3×3^3+…9×2^9+10×985
设S=1×2^1+2×2^2+3×3^3+…9×2^9
则2S=1×2^2+2×2^3+3×3^4+…9×2^10
相减得
S=-(2+2^2+2^3+…+2^9)+9×2^10
=2+8×2^10
原式=2+8×2^10+10×985=18044.
(后面求和是用的“错位相减法”)