a²+b²+c²+4≤ab+3b+2c
a²-ab+b²/4+3b²/4-3b+3+c²-2c+1≤0
(a-b/2)²+3(b/2-1)²+(c-1)²≤0
平方项恒非负,和恒非负,要不等式成立,只有各项均=0
b/2-1=0 b=2
a-b/2=0 a=1
c-1=0 c=1
a=1 b=2 c=1
提示:本题的关键在于将不等式右边移至左边后,配方,结果发现不等式左边是3个完全平方式的和.
a²+b²+c²+4≤ab+3b+2c
a²-ab+b²/4+3b²/4-3b+3+c²-2c+1≤0
(a-b/2)²+3(b/2-1)²+(c-1)²≤0
平方项恒非负,和恒非负,要不等式成立,只有各项均=0
b/2-1=0 b=2
a-b/2=0 a=1
c-1=0 c=1
a=1 b=2 c=1
提示:本题的关键在于将不等式右边移至左边后,配方,结果发现不等式左边是3个完全平方式的和.