M=2010²+2010²×2011²+2011²
设a=2010
则M=a^2+a^2(a+1)^2+(a+1)^2
=a^2+(a^2+1)(a+1)^2
=a^2+(a^2+1)(a^2+1+2a)
=a^2+(a^2+1)^2+2a(a^2+1)
=(a^2+1)^2+2a(a^2+1)+a^2
=(a^2+a+1)^2
所以M的平方根=正负(a^2+a+1)=正负4 042 111
M=2010²+2010²×2011²+2011²
设a=2010
则M=a^2+a^2(a+1)^2+(a+1)^2
=a^2+(a^2+1)(a+1)^2
=a^2+(a^2+1)(a^2+1+2a)
=a^2+(a^2+1)^2+2a(a^2+1)
=(a^2+1)^2+2a(a^2+1)+a^2
=(a^2+a+1)^2
所以M的平方根=正负(a^2+a+1)=正负4 042 111