根据三角形正弦定理
a/sinA=b/sinB=c/sinC
设a/sinA=b/sinB=c/sinC=1/k
则有sinA=ak
sinB=bk
sinC=ck
(sinA^2+sinB^2)/sinC^2 =(a²k²+b²k²)/c²k²=(a²+b²)/c²
因为a^2+b^2=2c^2
所以(sinA^2+sinB^2)/sinC^2 =(a²k²+b²k²)/c²k²=(a²+b²)/c²=2
根据三角形正弦定理
a/sinA=b/sinB=c/sinC
设a/sinA=b/sinB=c/sinC=1/k
则有sinA=ak
sinB=bk
sinC=ck
(sinA^2+sinB^2)/sinC^2 =(a²k²+b²k²)/c²k²=(a²+b²)/c²
因为a^2+b^2=2c^2
所以(sinA^2+sinB^2)/sinC^2 =(a²k²+b²k²)/c²k²=(a²+b²)/c²=2