{X^2+Y^2+Z^2=1 ①
{X+y+z=0 ,②为准线,
以X-1=Y-2=Z 为母线的圆柱面:x-x0=y-y0=z-z0,③
其中x0,y0,z0满足①、②.
由③,x0=x-z+z0,y0=y-z+z0,④
代入②,得
x+y-2z+3z0=0,z0=(-x-y+2z)/3,
代入④,x0=(2x-y-z)/3,y0=(-x+2y-z)/3,
代入②,(2x-y-z)^2+(-x+2y-z)^2+(-x-y+2z)^2=9,
化简得x^2+y^2+z^2-xy-yz-zx=3/2,为所求.