f(x)=ax+b/(x²-1)=(ax³-ax+b)/(x²-1),由奇函数,得
f(-x)=(-ax³+ax+b)/(x²-1)=(-ax³+ax-b)/(x²-1)=-(ax³-ax+b)/(x²-1)=-f(x)
等式两端相比较,解得b=0
f(x)为减函数,求导得 f'(x)=a-2bx/(x²-1)²=a
f(x)=ax+b/(x²-1)=(ax³-ax+b)/(x²-1),由奇函数,得
f(-x)=(-ax³+ax+b)/(x²-1)=(-ax³+ax-b)/(x²-1)=-(ax³-ax+b)/(x²-1)=-f(x)
等式两端相比较,解得b=0
f(x)为减函数,求导得 f'(x)=a-2bx/(x²-1)²=a